30 research outputs found

    Detection of Atmospheric Cherenkov Radiation Using Solar Heliostat Mirrors

    Full text link
    The gamma-ray energy region between 20 and 250 GeV is largely unexplored. Ground-based atmospheric Cherenkov detectors offer a possible way to explore this region, but large Cherenkov photon collection areas are needed to achieve low energy thresholds. This paper discusses the development of a Cherenkov detector using the heliostat mirrors of a solar power plant as the primary collector. As part of this development, we built a prototype detector consisting of four heliostat mirrors and used it to record atmospheric Cherenkov radiation produced in extensive air showers created by cosmic ray particles.Comment: 16 latex pages, 8 postscript figures, uses psfig.sty, to be published in Astroparticle Physic

    Very High Energy Gamma-ray spectral properties of Mrk 501 from CAT Cerenkov telescope observations in 1997

    Full text link
    The BL Lac object Mrk 501 went into a very high state of activity during 1997, both in VHE gamma-rays and X-rays. We present here results from observations at energies above 250 GeV carried out between March and October 1997 with the CAT Cerenkov imaging Telescope. The average differential spectrum between 30 GeV and 13 TeV shows significant curvature and is well represented by phi_0 * E_TeV^{-(alpha + beta*log10(E_TeV))}, with: phi_0 = 5.19 +/- 0.13 {stat} +/- 0.12 {sys-MC} +1.66/-1.04 {sys-atm} * 10^-11 /cm^2/s/TeV alpha = 2.24 +/- 0.04 {stat} +/- 0.05 {sys} beta = 0.50 +/- 0.07 {stat} (negligible systematics). The TeV spectral energy distribution of Mrk 501 clearly peaks in the range 500 GeV-1 TeV. Investigation of spectral variations shows a significant hardness-intensity correlation with no measurable effect on the curvature. This can be described as an increase of the peak TeV emission energy with intensity. Simultaneous and quasi-simultaneous CAT VHE gamma-ray and BeppoSAX hard X-ray detections for the highest recorded flare on 16th April and for lower-activity states of the same period show correlated variability with a higher luminosity in X-rays than in gamma-rays. The observed spectral energy distribution and the correlated variability between X-rays and gamma-rays, both in amplitude and in hardening of spectra, favour a two-component emission scheme where the low and high energy components are attributed to synchrotron and inverse Compton (IC) radiation, respectively.Comment: Submitted to Astronomy and Astrophysics, 8 pages including 6 figures. Published with minor change

    The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy

    Get PDF
    The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a very-high-definition camera (546 fast phototubes with 0.12 degrees spacing surrounded by 54 larger tubes in two guard rings) started operation in Autumn 1996 on the site of the former solar plant Themis (France). Using the atmospheric Cherenkov technique, it detects and identifies very high energy gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin

    Prototype Tests for the CELESTE Solar Array Gamma--Ray Telescope

    Get PDF
    The CELESTE experiment will be an Atmospheric Cherenkov detector designed to bridge the gap in energy sensitivity between current satellite and ground-based gamma-ray telescopes, 20 to 300 GeV. We present test results made at the former solar power plant, Themis, in the French Pyrenees. The tests confirm the viability of using a central tower heliostat array for Cherenkov wavefront sampling.Comment: LaTeX2e,30 pages including 14 figures, accepted for publication by Nuclear Instruments & Methods Section

    The CAT Imaging Telescope

    Get PDF
    The VHE gamma-ray imaging telescope CAT started taking data in October 1996. Located at the Themis solar site in southern France, it features a 17.7 m^2 Davies-Cotton mirror equipped with 600 PMT camera at the focal plane. The mechanics and optics, the PMTs and the electronics are presented. The performance, based on the first 7 months of operation, is described

    A new analysis method for very high definition Imaging Atmospheric Cherenkov Telescopes as applied to the CAT telescope

    Get PDF
    A new method of shower-image analysis is presented which appears very powerful as applied to those Cherenkov Imaging Telescopes with very high definition imaging capability. It provides hadron rejection on the basis of a single cut on the image shape, and simultaneously determines the energy of the electromagnetic shower and the position of the shower axis with respect to the detector. The source location is also reconstructed for each individual gamma-ray shower, even with one single telescope, so for a point source the hadron rejection can be further improved. As an example, this new method is applied to data from the CAT (Cherenkov Array at Themis) imaging telescope, which has been operational since Autumn, 1996.Comment: 22 pages. submitted to Elsevier Preprin

    Étude de la réaction 10b(d, 3α) à 270 keV

    No full text
    The reaction d +10B = 3α at 270 keV is well explained by a sequential mechanism via the first and second excited states of 8 Be. The angular distributions of α0 et α1 are not symmetric with respect to 90°.La réaction d + 10B = 3α à 270 keV semble être bien expliquée par un mécanisme séquentiel faisant intervenir le premier et le deuxième états excités de 8Be. Les distributions angulaires α 0 et α1 sont asymétriques par rapport à 90°

    ETUDE DES REACTIONS 9Be (d, po) 10Be ET 9Be(d, to) 8Be DE 0.24 A 3.8 MeV

    No full text
    Les réactions (d, po) et (d, to) sur 9Be ont été étudiées de 240 keV à 3.8 MeV. Les distributions angulaires sont données à 240 KeV, 2.2 MeV et 3.8 MeV. Une étude en D.W.B.A. pour la réaction 9Be(d, po) 10Be est discutée.The reactions (d, po) and (d, to) on 9Be have been studied from 240 KeV to 3.8 MeV. Angular distributions are given for 240 keV, 2.2 MeV and 3.8 MeV. The reaction (d, po) is analysed in terms of D.W.B.A. theory
    corecore